Coordinated Fault Tolerance for
High Performance Computing

Peter Beckman, William Gropp, Ewing Lusk,
Robert Ross, and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Al Geist

Computer Science and Mathematics Division
Oak Ridge National Laboratory

December 1, 2005

1 Executive Summary

Ultra-scale platforms are compound hierarchical systems. Currently, the world’s fastest computer
uses over 100,000 CPUs for computation, 1000 systems for disk storage, and 500 nodes for I/O
forwarding. The next version of this architecture will likely double those numbers, and the trend
is not slowing - machines from every vendor are becoming more complex as they scale up.

The petascale applications that are evolving to utilize these platforms face many new challenges.
The fault management issues for these emerging systems are well beyond the scope of today’s com-
mon infrastructure and practice. Currently, systems software components for large-scale machines
remain largely independent in their fault awareness and notification strategies. Faults can arise not
just from the hardware but also from the OS, middleware, and application levels. Often, only the
most rudimentary error conditions such as “job failed”, “file write failed, or worse yet, a hung ap-
plication provide scientists any notion that something has gone awry. Moreover, the multiple layers
of software between application and computer have little to no opportunity to report, avoid, or
correct the issue. Software fault detection and correction for supercomputers has remained largely
unchanged for more than two decades.

Our vision is to provide application scientists with access to ultra-scale platforms that behave
predictably and hide the occurrence of hardware and system software faults. Scientists running
on such a machine would never be allocated resources that were not performing as expected,
would never have to restart their job manually because of a hardware failure, and would never be
charged node-hours for time wasted due to problems with the system. Instead, the machine would
take underperforming resources off-line, delay scheduling of jobs when necessary resources are not

Application Job Management

Libraries File System

Message Passing Monitors

Parallel 110 Device Drivers

Checkpoint/Restart Operating System

aue|dyorg oourI9|0] }neH

User-oriented System
Software Software

Figure 1: The Fault Tolerance Backplane will provide a shared infrastructure for user-oriented and
system system to coordinate fault information and response

available, and restart jobs in the event of a system component failure.

We believe a coordinated approach to enable large systems to react to faults and interact
with both applications and other system components is required to provide resilience for petascale
applications and productivity gains for users. We propose to design and implement interfaces
for integrating fault tolerance features from multiple layers of the system software stack, from
the application and programming system layer through the file system and other parallel system
software to the operating system. Such integration will make possible a level of fault notification,
management, and recovery that is impossible for any single element to deliver.

In this project we will extend and adapt existing system software and middleware to plug into
a “backplane” and enable systems to react to faults in a holistic manner. We will focus on three
specific areas:

e Design and deployment of a fault awareness and notification backplane to provide common

uniform event handling and notification mechanisms for fault-aware libraries and middleware.

e System software tools and strategies to make existing libraries, run-time systems, and OS
kernels fault aware, and connect to and use the fault tolerant backplane.

e User-level interfaces, tools, and methods for integrating applications into the fault tolerant
backplane. Where possible we will leverage DOE projects in parallel libraries and languages,
operating systems, file systems, and scalable systems software. We will also work with appli-
cation teams to help them exploit this new technology.

2 Introduction

As systems are built from ever-larger numbers of components, fault detection, resiliency, and auto-
nomic behavior become increasingly important. Large-scale machines such as IBM’s Blue Gene and
Cray’s XT3 are designed and built with impressive hardware fault detection and recovery mecha-
nisms. If a chip overheats, it is automatically turned off. If a network link gets CRC errors, an alert
is raised. A redundant power supply can automatically switch on when another fails. Within the
system software, operating system, middleware, and user code, however, very little work has been
done to dynamically respond to fault detection. For example, if one of the storage nodes in a parallel
file system gets a disk error, the user application usually simply aborts with a “write failed” error.
Similarly, when a compute node fails, the most common behavior is for the message layer to simply
time-out and the application to eventually fail. Even fault tolerant extensions to MPI generally
only detect nodes that are no longer responding and then begin MPI-level mitigation strategies.
Knowledge of alternate interfaces, network tuning parameters, processor remapping, and the status
of failover disk storage lives completely outside these user-level communication libraries. The cur-
rent generation of scalable middleware is completely unequipped to detect and adaptively respond
to faults in ultra-scale environments because they do not take a holistic, full-system approach; fault
information is isolated, and actions uncoordinated.

The Scalable Systems Software SciDAC project has set the stage by building infrastructure
to share public interfaces and coordinate system software components for large machines. The
result has been a set of system management components, all sharing a common communication
library supporting multiple security levels and wire protocols, with public XML interfaces that
allow any other component to access their assorted functions. Both synchronous communication
(send/receive) and asynchronous communication (register/notify) are supported, allowing great
flexibility in how components are configured. It is easy to incorporate powerful components written
by others (such as alternative monitoring, scheduling, or accounting components) by embedding
them in "wrappers” that communicate with other components using the public interfaces. The
practicality of this approach has been demonstrated over the past year by operating Argonne’s
256-processor “Chiba City” cluster and 2048 processor IBM Blue Gene in production mode for
both application use and computer science research with system software consisting entirely of
Scalable Systems Software components [I]. This collection of existing components provides one
foundation on which we plan to build the fault-tolerance backplane.

2.1 A Backplane for Sharing and Coordinating Fault Information

Our innovative approach to addressing the need for fault management and autonomic computing
begins with the backplane, the coordinating infrastructure that enable all levels of software to
both share and respond to fault information. FOBAWS, the Fault Organizing Backplane for Auto-
nomic WidgetS, will be designed and built to provide light-weight coordination. FOBAWS will let
applications survive mistakes. FOBAWS will leverage existing libraries, run-time systems, and op-
erating systems. Packages such as PVFS2, BLCR, MPICH, ROMIO, Cobalt, ZeptoOS, OpenMPI,
and LAM-MPI all provide a component within the system software stack, and can all benefit from
sharing an integrated component-based framework for detecting and propagating fault information.
Beginning with this software, which spans operating systems, file systems, message passing layers,
libraries, and job management interfaces, we will design interfaces and components that can be
shared across all layers of scalable system software— controlling and responding to faults within
the system. FOBAWS modular design is based on four major components: the collection system,
the subscription and configuration layer, the event notification component, and the autonomic logic
engine.

At the lowest level of the fault management and autonomic computing system are the data col-
lectors that gather information about the basic system. This is where we intend to leverage packages
already widely available within the open source community. Many systems exist that collect and
display live system information. Inca, used by the TeraGrid, uses a standardized XML schema
that enables many authors to write "reporters” to collect data and propagate that information to
a centralized database. Similarly, Nagios, Clumon, Ganglia, and SNMP all provide mechanisms to
periodically collect data from active machines. We intend to use these existing systems and collect
information that can be the foundation for detecting and responding to anomalies in the system.

The subscription and configuration layers provide an up-to-date inventory of the system com-
ponents. Such an inventory is required both for understanding faults and for responding to them.
Are there any spare resources that can be retasked to take over? How many servers belong to
the PVFS storage system? What job is currently associated with node 27 The SciDAC Scalable
Systems Software work can be heavily leveraged in building this component. The Scalable Sys-
tems Software work has developed standardized interfaces for many configuration tasks, such as
job management.

FOBAWS will present an event and callback interface through which basic data on system
events can be communicated to and from user applications or fault-aware libraries (such as an
MPT implementation). Each system component must be able to register “interest” in a variable or
condition. For example, the OpenMPI software may want to be notified if one of the nodes is down
or a network interface is receiving many bit-errors. The key innovation, however, is that FOBAWS
will share that information with consistent interfaces across many levels of system software, from the
parallel file system, PVFS, to the math libraries. Applications and middleware will then cooperate
in taking appropriate action.

Finally, the autonomic logic engine will orchestrate the system response to faults. The logic
engine provides a hierarchical set of execution sites where “plug-ins” can be executed and react to
local information. With the backplane designed to be extremely light weight, it is the job of the
plug-ins to coordinate action across components.

UserApp:
WatchEvent(“MPI-10:offline”)
WatchEvent(“MPI-1O:freespace”)

Resource Manager Cobalt:
WatchEvent(“PFS:offline”)
WatchEvent(“PFS:freespace”)

PFS PVFS2:
RegisterEvent(“PFS:offline”)
RegisterEvent(“PFS:freespace”)

MPI-I0O ROMIO:
RegisterEvent(“MPI-10:offline”)

WatchEvent(“PFS:offline”)
WatchEvent(“PFS:freespace”)

Figure 2: Scenario 1: The Parallel File System Becomes Unavailable

3 Usage Scenarios

To demonstrate how fault-aware components at all the levels of the software stack can interact and
coordinate responses to faults in our design, we present four use-case scenarios. These examples
not only motivated our design, but they will also be used as milestones for the project.

3.1 Scenario 1: Parallel Storage is Offline

Unlike home directory partitions, which predictably use increasingly more disk space until the
administrator sends out a warning to the largest users, parallel file systems are linked to parallel
jobs, and the available storage may fluctuate wildly based on which jobs have run recently, and
which data sets have not been moved off to other storage. The volatile nature of parallel storage
availability makes it an prime target for improved fault tolerance. As a concrete example, let’s
consider the fault-awareness interactions between MPI-IO (ROMIO), a parallel file system (PVFS2),

and a job scheduler and resource manager (Cobalt).

PVFS2, a parallel file system for HPC, uses a fixed set of storage servers to provide multiple
data paths and increase throughput. Two common issues affect end-user application availability:
free space and dead servers. With the current version of PVFS2, a dead server without a failover
partner (a common deployment to reduce server costs) will make the entire distributed volume
unavailble. It is also a condition that PVFS2 can easily determine within its own communication
system, but is difficult for outside systems to properly detect. Using FOBAWS to share and then
coordinate corrective action is ideal.

Figure B shows how components can register or watch events. Each component can decide how
it should use event data. In our example, when Cobalt, the resource manager and job scheduler
is notified that PVFS2 is offline or freespace dangerously low, it can hold all jobs in the queue
that depend on PVFS2 and email users that their jobs will be held in the queue until PVFS2
service is restored. Likewise, MPI-1IO, which can use PVFS2 may wish to be notified if the service
is unavailable, and pass that information to the application. Applications that do not take full
advantage of FOBAWS would simply be notified of the error when attempting to use MPI-IO.
However, rather than having the file write hang indefinately or simply get an error that the file
operation failed, a useful message could be sent to stderr that MPI-IO failed because PVFS2 is
offline. Applications which choose to manage fault information could, for example, choose to turn
off PVFS2 checkpointing and write its final output file to the slower, but functioning NFS server.

3.2 Scenario 2: A Cluster Node is Failing

There are many ways for a node to cause mischief. From a fault management perspective, nodes that
suddenly die are the simplest to handle. More diffuclt, is when a flagging processor becomes slow
or the interconnect generates rivers of networking errors that force message layer retransmissions.
Nodes can also begin behaving badly because of run-amok services, such as a background process
that starts hoarding memory and forces swapping. To address these issues we include the concept
of a performance fault, when expected performance is so far below acceptable levels that the fault
system should be activated, even though nodes may technically remain “up”. The operating system,
device drivers, and low level management and monitoring system must all cooperate with the HPC
messaging layer to detect and signal faults.

The faults described above could be detected either by the middleware (MPI messages fail), or
the a combination of the node’s own low-level system software and external monitoring packages.
However the fault is first detected, we will build an autonomic plug-in to coordinate a holistic,
system-wide response. First, the application and other middleware layers must be notified. Our
strategy is to enhance all systems using the backplane, even if end-suer applications remain obliv-
ious to its existance. Faulty or even misbehaving nodes will be reported to the user application
via the job management system software, even if the application is not fault aware. A simple
message to standard error can announce the difficulty. This straightforward user-level response is
much appreciated by users normally faced with deducing why their job failed. However, with the
autonomic plug-in, much more can be accomplished.

Applications or middleware that are fault aware and respond to the backplane announcing a

critical fault can choose to continue execution. While the default behavior for HPC systems is to kill
the entire job if one node fails, applications or fault-aware layers could overide this behaviour. An
application built with a fault tolerant MPI can simply indicate that the job will keep running, even
if nodes die. However, when an application has no other choice but to terminate, the autonomic
engine is far from done.

Next, the user’s CPU accounting must be refunded. If a job dies because of a node failure, a
refund should follow. Also, if the application or middleware supports checkpoint /restart, the job
will automatically resubmitted to the job queues, possibly at the head of the line. Furthermore, the
system management system components must also do their part to mitigate the failure. Where there
are spare nodes, they will be brought on line to replace the bogus node. Otherwire, the resource
manager will mark the node “offline” and ensure jobs will not be scheduled to run on it. Finally,
the autonomic engine will automatically save citical log files from the ailing node (if possible) and
then launch a full diagnostic reboot and test regime to qualify the node before attempting to put
it back into service.

3.3 Scenario 3: Checkpoint / Restart

This is where we cover both signalling an application to be frozen and rolled out (system initiated)
and user-initialted checkpoint /restart

3.4 Scenario 4: Faulty Interconnection

collective faults, etc

4 The Areas

For each of these areas, we need to discuss: the challenges, and what can be achieved 1) separately
and 2) as part of FABS.

4.1 MPI

An MPI implementation is in a good position both to recognize faults and to report them. An MPI
library makes calls to lower-level communication libraries such as sockets, Myrinet, or Infiniband
libraries supplied by OS or networks vendors, and those libraries will return error codes to the
calling layer in the MI implementation. The MPI Standard specifies a highly flexible behavior for
processing errors. According to the Standard, errors may cause the parallel job to abort, may cause
error codes to be returned to the caller of the highest level MPI function, or invoke a user-defined
error handler, at the discretion of the application or library making the MPI calls. Error handling
behavior can also be customized for individual communicators.

In [2], we described an approach to fault tolerance that relies only on the MPI standard itself,

and outlined some of the ways in which an application can itself become more fault tolerant by
taking advantage of some features of the MPI specification that would be present in any high-quality
MPI implementation. However, in the presence of the fault-tolerance backplane, much more could
be done. The MPI library, in addition to what it does to implement the Standard, could also notify
the fault-tolerant backplane of whatever details it has learned from the failure of the communication
layer. At that point any component that has registered to receive such notification would be notified
and could take appropriate action. Such components might include a checkpoint manager, network
monitor, file system monitor, or account system, each of which might be able to provide services
to the application to minimize the effect of the fault.

4.2 PVFS
4.3 ROMIO
4.4 ZeptoOS
4.5 Cobalt

5 Technical Approach

Predicting Failures

Preventing system failures before they occur is the direct method for preventing application
errors and system downtime. Many modern hardware systems are now collecting data that is
useful for predictive failure analysis. Many failures are actually not sudden; hints of impending
trouble provide clues before failure. Modern disk drives have special interfaces that can be used to
probe heath statistics, such as spin-up time, head flying height, and bit error rates. ECC memory,
network interfaces, and motherboard chassis also have vital reliability data that can be collected.

Unfortunately, current system software does not record information about impending faults or
even maintain a history of which components are most likely to fail. To address this situation, our
project will explore collecting software component failure rates as well as possible precursors to
failure. The Linux kernel has already added a couple of these internal checks. For example, if the
kernel detects that a process is spawning too rapidly, it guesses that a failure is happening, and
adjusts the system. Collecting information from the scalable system software will enable the fault
detection and autonomic system to predict and avoid application failure.

We propose to further port and develop this system to allow its use on a broad range of systems,
including all those in the NLCF. The NLCF includes a diverse set of supercomputers: Linux clusters
at ANL, ORNL, and PNNL; an IBM BG/L at ANL; and a Cray X1E and Cray XT3 at ORNL.
Development often starts on more personal systems. As such, we will also port this environment
to laptops and desktop computers.

Backplane

o Registration of Interest

o Emit Event

o communication layer

o monitors/autonomic components/watchdogs

o Future fault event (even scheduled, such as preventive maint)
o scalability of system

What events?

o schema (SNMP)

o performance faults

o disk, net

o condor resource description language as reference?

6 Milestones

Year 1 Getting started

e Tell users that abort will happen
e User (i.e., middleware lib) tells system failure happened

e define interfaces, build prototype for event system
Year 2 Initial example scenarios

e Task farm example (Steve Pieper’s QMC code)

e Libraries can event/consume to each other
Year 3 Initial releases of backplane aware instances of components

e Job requirements and current state of errors affect scheduler

e All participants release Software to support FOBAWS
Year 4 Usage with applications

e KeLP restart from checkpoint with hooks to scheduler
e Scalability testing

Year 5 Advanced features into released software

e Toolkit for watchdogs, autonomic components, etc.

o L.C. software

7 Why Us?

Why is this group the best one to undertake this project? Four particular reasons are 1) immedi-
ate background, 2) familiarity with instances of major components, 3) record of delivering useful
software, and 4) access to actual systems to develop and test on.

1. In some ways this project is a continuation of the Scalable Systems Software SciDAC. It
has a tighter focus and a smaller cast of characters, but it continues that project’s emphasis
on the specification of open, public interfaces that allow multiple instantiations of individual
components to use the common infrastructure. Lessons learned there about portable, scalable
interface defintions will be applied in this project.

2. This group encompasses implementors of instances of many of the key components: MPI
implementation library (MPICH2, OpenMPI), parallel file system (PVFS2), operating system
for individual nodes (ZeptoOS), configuration system (BCFG), checkpoint manager (BCLR)
and others. This will allow us to test our backplane ideas in the context of state-of-the-art
instances of the various components. Because of the openness of the planned architecture, of
course, other versions of such components will also be able to make use of the fault tolerance
backplane. In order to ensure this in the case of the MPI implementation in particular, we
have included in the group two different open-source MPI implementations.

3. This group has a track record of transitioning research software into real community software
in wide use on a variety of platforms. MPICH, Cobalt, and PVFS are just three examples.

4. We have at our disposal several research and production systems to develop and test on. The
Radix Lab at Argonne includes Chiba City, a 512-cpu system that routinely runs a mix of
research and production jobs; we also intend to experiment on the BG/L system a Argonne
and the leadership class machines at Oak Ridge.

8 Budget Summary
9 Summary

References

[1] N. Desai, R. Bradshaw, A. Lusk, E. Lusk, and R Butler. Component-based cluster systems
software architecture: A case study. In IEEE International Conference on Cluseter Computing,
2004.

[2] William D. Gropp and Ewing Lusk. Fault tolerance in MPI programs. International Journal
of High Performance Computer Applications, 18(3):363-372, 2004.

10

A Appendix: Any Appendix here

11

B Appendix: Any other Appendix here

12

C Appendix: Letters of Support

13

	Executive Summary
	Introduction
	A Backplane for Sharing and Coordinating Fault Information

	Usage Scenarios
	Scenario 1: Parallel Storage is Offline
	Scenario 2: A Cluster Node is Failing
	Scenario 3: Checkpoint / Restart
	Scenario 4: Faulty Interconnection

	The Areas
	MPI
	PVFS
	ROMIO
	ZeptoOS
	Cobalt

	Technical Approach
	Milestones
	Why Us?
	Budget Summary
	Summary
	Appendix: Any Appendix here
	Appendix: Any other Appendix here
	Appendix: Letters of Support

